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known polylog time algorithm that is numerically stable. The algorithm relies on

our method of computing an approximate inverse of A that involves O(log n)

parallel steps and n? processors.

Also, we give a parallel algorithm for solution of a linear system Ax = b
with a sparse nXn symmetric positive definite matrix A. If the graph G(A)
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separable, then our algorithm requires only O((log n)(log s(n))?) time and
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A so that the solution of any other linear system Ax = b’ with the same matrix
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Abstract

The most efficient known parallel algorithms for inversion of a nonsingular
nXn matrix A or rsolvigqg a line?r fsystem Ax = b over the rationals require
O(logr;)},;’ti)r;; ax;d M(n)ll wp'l'o:;ss:n'sm(where M(n) is the number of processors
required in order to multiply two nXn rational matrices in time O(log n).) Furth-
ermore, all known polylog time algorithms for those problems are unstable: they

require the calculations to be done with perfect precision; otherwise they give no

results at all.

This paper describes parallel algorithms that have good numerical stability
and remain efficient as n grows large. \‘In particular, we describe a quadratically
convergent iterative method that gives the inverse (within the relative precision
2'"0(“) of an nXn rational matrix A with condition < n°" in O(log n)? time
using M(n) processors. This is the optimum processor bound and a vn improve-
ment of known processor bounds for polylog time matrix inversion. It is the first

known polylog time algorithm that is numerically stable. The algorithm relies on
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our method of computing an approximate inverse of A that involves O(log n)

parallel steps and n? processors.

Also, we give a parallel algorithm for solution of a linear system Ax = b
with a sparse nXn symmetric positive definite matrix A. If the graph G(A)
(which has n vertices and has an edge for each nonzero entry of A) is s(n)-
separable, then our algorithm requires only Of(log n)(log s(n))?®) time and
| E| + M(s(n)) processors. The algorithm computes a recursive factorization of
A so that the solution of any other linear system Ax = b’ with the same matrix

A requires only O(log n log s(n)) time and | E| + s(n)? processors.

1. Introduction

Recently it has become feasible to construct computer architectures with a
large number of processors. We assume the parallel machine model of [Borodin,
von zur Gathen, and Hopcroft, 82], where on each step each processor can do a
single rational addition, subtraction, multiplication, or division. In this paper we
are concerned about the efficient use of this parallelism for solving some funda-

mental numerical problems such as

(1) INVERT: given an nXn rational matrix A = (a;;), then output A! within a
prescribed accuracy ¢ if A is well-conditioned, else output ill-conditioned.

(2) LINEAR-SOLVE: given a well-conditioned nXn matrix A and a column vec-
tor b of length n, find x = A-'b within a prescribed accuracy e.
We say that matrix A is well-conditioned if cond A < C for a certain param-

eter C. We say that we have computed A-! within aceuracy € if the norm of the

error matrix divided by the norm of A~! does not exceed e.

We are interested in parallel algorithms that have good numerical stability,
polylog time bounds and small processor bounds for INVERT and LINEAR-
SOLVE. Certainly LINEAR-SOLVE can be immediately reduced to INVERT by

~ i e

.- . o -
PN R
A




the multiplication of A~! by b. Such a reduction of LINEAR-SOLVE to INVERT
is particularly appropriate if several linear systems Ax = b with the same A and

different b must be solved.

We will present the algorithms for INVERT and for LINEAR-SOLVE that
can be applied for any choice of C and e¢. On the other hand, the complexity
estimates of our algorithms depend on the choice of C and ¢. In this paper we
will be primarily concerned about the complexity estimates in the case where
C=n%¢= 22 for some positive constants ¢ and ¢’ , say ¢=100, ¢ =10.
This covers all instances of practical interest. For the sake of completeness, we
will also supply the estimates in the case of arbitrary C and e. To simplify the
estimates, we will assume that the arithmetic operations are performed with
infinite precision. In addition, we will present the error estimates in the case of
finite precision computation; this will demonstrate that our iterative algorithms

are stable, moreover, two of them are self-correcting.

1.1. Previous Work On Parallel Matrix Inversion

Parallel algorithms with simultaneous polylog time and polynomial processor
bounds are known to exist for these problems, but their practical utility is limited
due to their large processor bounds. Furthermore these known algorithms have
numerical stability problems; if the :alculations are not taken in exact arithmetic,
their outputs may substantially differ from A~!, so as not to constitute an

approximate inverse.

[Csanky, 76] gave the first proof that INVERT, over fields of characteristic
0, can be done in polylog time. The result was at that time surprising, and the
proof is quite elegant. Csanky used the Cayley-Hamilton theorem to reduce the

problem of matrix inversion to essentially the problem of computing O(n) pro-

ducts of nXn matrices. Let M(n) > n? be the number of processors sufficient in

order to multiply two nXn matrices in O(log n) time. By the upper bounds of
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[Chandra, 76], M(n) < n?8!. We easily extend that result as follows. If nXn
matrices can be multiplied involving O(n“) arithmetic operations for some w > 2,
then M(n) = n“, see Appendix A. The current best upper bound on w is 2.495...;
however, for matrices of smaller sizes we should count only on M(n)=n® due to
the considerable overhead: of the known asymptotically fast algorithms for matrix
multiplication, see [Coppersmith and Winograd, 82] and compare [Pan, 84].
Csanky’s algorithm takes simultaneous time O(log n)* and nM(n) processors.
[Preparata and Sarwate, 78] reduced the processor bounds to vn M(n). If nonex-
act arithmetic is used, as this occurs in practice, both of these methods suffer
from numerical instability due to the use of the Cayley-Hamilton theorem (see
discussion in [Wilkinson, 61,85]).

Two methods for parallel matrix inversion over arbitrary fields of constants
are known. [Borodin, von zur Gathen, and Hopcroft, 82] observe that the results
of [Valiant, Skyum, Berkowitz, and Rackoff, 83] and [Strassen, 73] combined can
be used to parallelize the sequential Gaussian elimination algorithm for matrix
inversion. This yields a simultaneous O(log n)? time and (very large) polynomial
processor algorithm for INVERT over any field. (As a matter of fact, the
straightforward parallelization of the Gaussian elimination only yields O(n) time,
n? processor algorithms for both INVERT and LINEAR-SOLVE.) [Berkowitz, 84]
has another such matrix inversion algorithm over arbitrary fields. Neither of
these two polylog time algorithms can be viewed as practical in the case of real,

complex, or rational inputs.

1.2. Our Results for INVERT.
We have two main results:

(1) a parallel iterative method for INVERT in the case of well-conditioned

matrices, and
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(2) a parallel method for LINEAR-SOLVE in the case of symmetric positive

definite sparse matrices.

Both algorithms run in polylog time and give significant decrease of the known

processor bounds.

The iterative methods that we describe in Section 2 and Appendix C. are
known ones, namely, the Newton iteration and its extensions. The first use of
the Newton iteration to invert a matrix is attributed by Householder to [Schultz,
33] but frequently goes by the name of [Hotelling, 43a,b] and [Bodewig, 59]. (See
[Householder, 64], [Isaacson and Keller, 66], and [Newman, 82] for more recent
descriptions of such methods.) [Bojadczyk, 84] made still another rediscovery of

Newton'’s method and proposed it for parallel computation.

The Newton method is not normally recommended for matrix inversion in
textbooks on numerical analysis, since an initial approximate inverse B of a given
matrix A is required such that ||I - BA|| is substantially less than 1. The prob-
lem of efficiently (i.e., without inverting A) finding such an approximate inverse
of a well-conditioned matrix A was an open problem in numerical analysis for the
last 50 years since [Schultz, 33]. For a strictly diagonally dominant matrix A an
approximate inverse B of A is an easily computable diagonal matrix, but no

known techniques give such B for a general matrix A.

We observe that it suffices to define an approximate inverse B such that
Il - BA|] < 1 - (1/n® (). Then, since the Newton method is quadratically con-
vergent, O(log n) iterations are sufficient for numerical computation of Al (up to
accuracy 2°°"). Each iteration takes only O(log n) time and M(n) processors.
In that situation we managed to make the Newton iteration work by contributing
a method for computing an approximate inverse B of any given well-conditioned
matrix A such that ||l - BA|| < 1 - (1/n%("), see Lemma 2.4 in Section 2 and its

substantiation in Section 3. The evaluation of such B involves only 3n2-2n+1
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arithmetic operations and 2n-2 comparisons that can be implemented using O(log
n) parallel steps and n? processors, see Lemma 2.5 in Section 2. Our resulting
algorithm computes A™! using only a relatively few (only O(log n)) matrix multi- :
plications, that is, using Of(log n)?) time and M(n) processors. This makes the . :_'_‘.;:’j_j::]
algorithm efficient for both sequential and parallel computations. Thus we have c
resolved the key problem that previously made the use of the Newton iteration y
impractical for computation of A}, Furthermore, our processor bound is optimal
because matrix multiplication can be reduced to matrix inversion, see [Borodin
and Munro, 75}, p. 51. Our parallel and sequential time bounds are optimal o » 4-

nearly optimal (up to within the factor O(log n)). We present the asymptotic

complexity estimates but the reader can see from our analysis that our algorithms

have small overhead, so they are efficient and practical already for moderate n.

1.3. Our Results for LINEAR-SOLVE in the Case of Sparse Symmetric

Positive Definite Systems.

Our another contribution is a method for LINEAR-SOLVE for sparse sym-
metric positive definite linear systems, which in many practical cases provides a
further order of magnitude improvement in processor bounds without significant
additional time cost. Our algorithm drastically differs from the known methods

for polylog time solution of linear systems, which make no use of the sparsity

structure of the matrix A. To characterize the linear systems Ax=b that our

algorithm solve, we will use the two following definitions.

Definition 1.1. Let C be a class of undirected graphs closed under the sub-

graph relation, that is, if G € C and G’ is a subgraph of G, then G' € C. The > )
graphs of that class C are s(n)-separable if there exist constants ny > 0 and |
a,0 < a < 1, such that for each graph G € C with n 2> nq vertices there is a 1
partition  V,V,S of the vertex set of G such that L

[ Vil <an, |Vy] <an, |S] < s(n), and G has no edge from a vertex of V,

..........................
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to V, (hence S is said to be an s(n)-separator of G and the class C is said to have

the s(n)-separator property).

Binary trees are obviously 1-separable. A d-dimensional grid (of a uniform
size in each dimension) is n!-(/9).separable. [Lipton and Tarjan, 79] show that ﬁ
the planar graphs are v8n-separable and that every n-vertex finite element graph _ J
with < k boundary vertices in every element is 4 |k/2] \/E-s.eparable. ]

Definition 1.2. Given an nXn symmetric matrix A = (ay), we define
G(A)=(V,E) to be the undirected graph with vertex set V={1,...,n} and edge set
E={{ij} | a;; # 0}. A is sparse if |E| =o(n?).

The very large linear systems Ax=b that arise in practice often are sparse
and furthermore have graphs G(A) with small separators. Important examples of
such systems can be found in circuit analysis (e.g., in the analysis of the electrical
properties of a VLSI circuit), in structural mechanics {e.g., in the stress analysis
of large structures), and in fluid mechanics (e.g., in the design of airplane wings
and in weather prediction). These problems require the solution of (nonlinear)
partial differential equations, which are then closely approximated by very large
linear difference equations whose graphs are generally planar graphs or 3-
dimensional grids. The standard weather prediction model for the U.S.A., for
example, consists of a 3-dimensional grid with a very large number n of grid
points, but this grid has only a constant height h between 7 and 20, and hence it

is at most vhn-separable.

In general, the inverse of a sparse matrix A (even of one with small separa-
tors) is dense. Our algorithm for LINEAR-SOLVE avoids computing the inverse
matrix, and instead computes a special factorization of A. For sparse matrices
with small separators, our polylog time algorithm yields processor bounds that

are an order of magnitude lower than the bounds attained by other polylog time

~
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parallel algorithms, which compute the inverse matrix. Specifically, given an
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nXn positive definite symmetric matrix A such that G(A) is s(n)-separable and

s(n) is of the form n? for a constant o, then we can compute the special recursive

factorization of A in O((log n)(log s(n))?) time using | E| + M(s(n)) processors. i

Then, given this recursive factorization, the solution of Ax=b for any given b
RN

requires only O(log n log s(n)) time and |E| + (s(n))? processors. ; 1
The key idea is to use a nested dissection of G(A) in order to reduce the )

problem to inverting dense matrices of sizes at most s(n) X s(n). The idea of
nested dissection is well known for sequential methods. It was first proposed by 1
[George, 73] for grid graphs and later generalized by [Lipton, Rose, and Tarjan, ]

79] to graphs with small separators. We are the first to apply a nested dissection ]

to yield a parallel algorithm with polylog time bounds. The extension of the idea
of nested dissection from the sequential case to the parallel case was not immedi-
ate since many sets of separators must be eliminated at each parallel step.
Furthermore, in the parallel case we need a special recursive factorization of A, -

distinct from the LDLT-factorization used in sequential nested dissection.

Let us comment on the complexity of our algorithm. At first we will assume
the practical bound M(n) = n® for matrix multiplication. It is significant that
our parallel nested dissection algorithm has processor bounds that are substantial

practical improvements over the previously known bounds.

Let G be a fixed planar graph such that O(v/n)-separators are known for G
and its subgraphs. (For example, G might be a vn X V1 grid graph). Then for
any nXn matrix A such that G = G(A) our parallel nested dissection algorithm .Z'j'.-'"f
takes O(log n)® time and n'® processors to compute the special recursive factori-
zation of A, and then O(log n)? time and n processors to solve any linear system
Ax=b with A fixed. We have the same time bounds and the processor bounds

n'k% and nk?, respectively, if G(A) is an n-vertex finite element graph with < k

e LA
PN} YV S T L

vertices on the boundary of each face. In yet another example, if G(A) is a 3-

e e
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factored as LLT where L is a linear triangular matrix, see [Wilkinson, 65], [Golub
and van Loan, 83]. Furthermore such adecomposition Ag = LLT is unique if L
has positive diagonal entries. Then (4.2) and (4.3) imply similar decompositions
for the matrices Ay, X, for all h, so that all of those matrices are symmetric posi-
tive definite. Let us designate Ay = LyL,T, X, = L,L,7. Then A;! = Ly Ly,
Xy, = Ly(Ly")T and (4.2) and (4.3) imply that
L, 0 4 (Lt xgtyyT
Ly = -1 y Ly = -1 )
thh Lh+l 0 Lh+1

h=0,1,....d-1. Let ¥ be a column-vector such that |[v]| = 1, ||Ly¥|| = ||L,]|, see
(2.1). Then, padding v with zeros at the bottom, we will obtain a vector v such
that [[v[[=1 and [[Lyv]l 2 [[LyvIl = [iLyll, so that [[Lyl| > |[Ly||. Similarly
LAl 2> Mgl LG 2 L ol 1L 2> ([Tl

By Lemma 3.4, all of those four bounds combined imply that

HARN 2 1IXull NANE 2 HAp 4l
AR 2 X5 ], NAGHE > [JAgsl| for all h=0,1,...,d-1.

Surely cond A = cond A,, so these inequalities immediately imply Lemma 4.4.

QED.

Remark 4.1. The algorithm of this section can be extended to the cases
where A is an arbitrary matrix with small separators and such that all “inter-

mediate” submatrices X, are well-conditioned. The latter property, however,
may not hold even for some symmetric matrices A such as el 5}] where || is
small.

Lemma 4.2(b) implies

Lemma 4.5. The matriz product Y, X;'Y,I can be decomposed into Ny, pro-

ducts of pairs of malrices of sizes at most nyy X nyy for k=1,.. N, where

Ny = | Syy|. These products can be computed 1n time O(log s(n))? using a total

Semadia B
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some 0 < | < h-1, unless j* = j°* (we will omit the latter trivial case). Thus
there exists a path {j°+8& = ju.iz},{isds}, . - ., {ij-pdy = j°"+&} in E visiting
only vertices jj,...,j; in Ry; but the induction hypothesis (a) implies that there ]
can be no edge in E, between Ry and R, ;. for k5#£k®, s0 j;,....j; € Ry for some l

unique k. Thus we have established the case (b) of the lemma for E; ;.

Next suppose the case (a) of Lemma 4.2 does not hold for h+1; so there

exists a path p in G, between some i ¢ Vj., and j € Ry.; where h* > h+1 but

oo a b

p visits no vertex v with n{v) > §,.,,. Case (b) for h implies that
{i,j} € E,,, - E, only if there is a path in G, between i and j containing only

vertices j;,....J; € Ry, with n(j,) < &4y, for r=1,...,. Thus we can construct from

P a path p' in Gy, between i and j that visits no vertex v with n{(v) > §.,,,
violating the induction hypothesis for (a), a contradiction. Thus we have shown
that (a) holds for G, ,,, establishing the induction hypothesis for h+1. Q.E.D.

Lemma 4.2(a) implies that E; contains no edge between R,, and R, ,. for
k # k. Since max, {Ry,| < maxys(|Vp!l) < s(a%®n), we immediately
arrive at

Lemma 4.3. X, is a block-diagonal matriz consisting of Ny < 241 square

blocks, where each block is of size at most s(a®Pn) X s(a%tn).

Lemma 4.3 implies that the inversion of X;! can be reduced to N, < 24-h
parallel inversions of dense matrices (i.e., one dense matrix is associated with ;
each Ry ), each of size at most s(a%tn) x s(a®bn). By Corollary 2.1, this can
be done in O(log s(n))? time, NyM(s(a%"n)) < 2¢PM(s(a%Pn)) processors. By -.':'.H
our assumptions, a“? < 1/2, so this processor bound is O(M(s(n))). In fact, we B
need to prove the following lemma in order to be able to apply Corollary 2.1. ‘

Lemma 4.4. cond X, < cond A for all h. B

Proof. = PAPT is a symmetric-positive definite matrix, so it can be R
y o
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entry at the i-th row and the j-th column of A, is nonzero provided that here the
rows are counted bottom-up and the columns from right to left.

The fill-in at stage h is the set of edges that are in E;, but not in E,_,. The
following technical lemma upper bounds this fill-in and also provides some useful
information about the connectivity structure of Gy,

Lemma 4.2. Leth > 0. Then
a) ifp is a path in G, betweeni ¢ Vi and j € Ry.y for some h* > h and some

k, then p visits some vertex v such that m(v) > 6y, ,, that is, v & R, for

q< b
b) Eu,, € {{ij} €E, |ij ¢ Ry}

U{{ii} | Tk I iihlivdeh - -0 licobi } {00} € Ey}

where jy, . . ., 3 € Ry and n(i) > &, n(j) > &}.

Proof (by induction on h). We first consider the case (a) with h=0.
Observe that if there is a path p in Go between some i ¢ Vy., and j € Ry, for
any h* > 0, then p must contain a vertex, say j°, of the separator set Shet 1k
where (Ve | 1+ Spep1ye) is the parent node of (Vye,S- ) in Tg. This vertex j* has
number ()°) > §,.,,, as required.

Suppose that Lemma 4.2(a) holds for some fixed h and for all h* > h. By
definition, Ay, | = Z;, - Y Xy'Yy. Let X, = (x)), Xg!' = X, = (%), Yo = (vy),
Zy, = (z;), and Wy = YV, X;'Y,T = (w;). I {i,j} € Ey,,, then ij ¢ Ry, by the
definition of Ry, so (i) > &, #{j) > 84, Furthermore we have z; 5 ; , # O or
otherwise w; 5 ; 5 # 0. If z; 5 ; 5 7% 0, then {i,j} € E; as claimed. On the other
hand, if w4 ;5 # 0, then Tj*+8,j° *+8 € Ry such that y. #0, Xjopce 5% 0
and y; .. 7% 0. It follows that {i,j*+8,},{j,i° *+6,} € E;. Furthermore the Cayley-
Hamilton Theorem gives Xy! = col + ¢; X}, +...+ ¢y_1 X! for some scalars

Cgr €y - - -, €4y Hence Xjeee 7% 0 implies that the (j°,j*) entry of X, is not 0, for

17 S
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d
Observe that, by definition, Ry NRye = ¢ if h 3£ h* and that V = Y, R,.

Let = {1,...,n} — {1,...,n} be any enumeration of the n vertices of G such
that, if v ERy, v* € Ry for b* > h, then x(v) < x{v’). Thus the elements of
m(Ry) are in the range from &+1,...,6,4, where & = Y, |Rg|. Such an
enumeration can be easily computed in total time O(log n)? using n/log n proces-
sors by first numbering the vertices of Ry = Sy by n, n-1,... and then numbering
(also in the decreasing order) all previously unnumbered vertices of Ry, of height h
for each h=d-1,d-2,...,0.

We now define the permutation matrix P such that P; =1 if j = ={i) and
P; = 0 otherwise. Then we define the initial matrix Ag = PAPT. Recursively,
for h=0,1,...,d-1,

w3 )
is the (n-6,) X (n-6,) symmetric matrix where X, is the |Ry| X |R,| upper
left submatrix of A;Y), is the (n-8,-|Ry|) X |Ry|) lower left submatrix of
A,, and Z, is the (n-6,- | Ry | ) X (n-6,- | Ry | ) lower right submatrix of A,. We
then define Ay, = Z, - Y;Xy'Y . Thus at stage b we have eliminated the ele-
ments associated with R,. Note that A, ., is symmetric positive definite if A, is,
compare the proof of Lemma 4.4 below. We now claim that we can compute
A,4; from Xy, Z, and Y), in time Oflog s(n))? using at most M(s(n)) processors.
To prove this, we must investigate the sparsity structure of the latter subma-

trices of A;.

Let A, = (ai}h)). We define an associated graph G, = (V},E;) with vertex
set Vy, = {6,+1, 8,+2,...,0} and edge set Ey, = {{i+&,, j+&} | a,-{h) 7 0}; that is,

G,, is derived from G(A;) by adding &, to each vertex number, see Figures 1,2,3,4

and 5 below. This enumeration implies that {n-i,n~j} € E, if and only if the
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Efficient parallel computation of s(n)-separators is not simple in general but
it is rather straightforward in the practically important cases of grid graphs (see
illustrative Figures 1,2,3,4,5 below); similarly such computation is simple for
many finite element graphs, compare [George,73].

To prove Theorem 4.1, we will begin with defining a binary tree Tg for each
graph G € C, see Figure 8. Suppose G=(V,E) has n vertices. If n < ny, where
ny is a given constant, (see Definition 1.1), we let Tg be the trivial tree with no
edges and with the single leaf (V,S) where S=V. Else, if n > ny, we recall that
we know an s(n)-separator S of G so that we can find a partition V,, V,, S of V
such that there is no edge in E between the sets V, and V,, and furthermore
|V,} <an, |Vy| <ean, and |S| < s(n). Then Tg is defined to be the
binary tree with the root (V,S) having exactly two children that are the roots of
the two subtrees Tg, Tg, of Tg where Gy, is the subgraph of G induced by the

vertex set S U Vy, for h=1,2.

Let the Aeight of a node v in T equal d minus the length of the path from
the root to v where d, the height of the root, is the maximum length of a path
from the root to a leaf. Let Ny be the number of nodes of height h in Tg. Since

Tg is a binary tree, Ny < 24 Let (Vyy, Sp1), -0 (ViNwShn,) be a list of these

Na
nodes of height h and let §; = kU Sy k- Observe that by the s(n)-separable pro-
-} !

perty of C, |Vy, | < adPn and | Spi |l < s(ad ™) for each h > 0 and
k =1,..,N;. Thus d < c’log n, ¢* = 1/log(1/a) for a%n < ng, | Voy | < ng and

Sox = Vo for all k, by the definition of the tree Tg. ’

PR BRI

For each k = 1,...,Ny such that Sy, 7# V,\, let Ry denote the set of all

elements of Sy, that are not in Sy. for h* > h. (Actually Ry, = Spy - U Spepe

]
where the union is over all ancestors (Vye,«Syeys) of (Vpy,Spy).) The s(n)- L 1
N RS
separable property implies that R,y N Ry, = ¢ if k; 7 ky. Let Ry, = kUl Ry - S
- :_ - 1
t

....................
.......
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symmetric positive definite matriz A such that cond A < %) and G=G(A), we
can numerically compute a recursive s(n)-factorization in time O(log n(log s(n))?)
using |E| + M(s(n)) + n/log n processors (where M(s(n)) ss the number of pro-
cessors sufficient in order to multiply two s(n) X s(n) matrices in time
O(log s(n))). Furthermore that recursive s(n)-factorization satisfies Lemmas 4.5
and 4.6 below. Whenever such a recursive s(n)-factorization of A is available,
Oflog n log s(n)) time and |E| + s(n)? processors suffice to solve a system of

linear equations Ax=Db for any given column vector b of length n.

Corollary 4.1. Fiz an n-vertez planar graph G such that O(vn)-separators
Jor G and for its subgraphs have been precomputed. If A is an nXn symmetric
positive definite matriz with G=G(A) and if cond A < 0, then we can numer-
ically compute a recursive O(vn)-factorization of A in time O(logn)® using
M(vn) < n'? processors. Whenever such a recursive factorization ts available,

O(log n)? time and n processors suffice to solve Ax=b for a given b.

Corollary 4.2. Fir an n-vertez finite element graph G with at most k ver-
tices on the boundary of every face. Let O(kv'n)-separators for G and for its sub-
graphs have been precomputed. If A is an nXn symmetric positive definite
matriz with G=G(A) and if cond A+< 0%, then we can numerically compute a
recursive O(kv/n)-factorization of A in time O(log n)® wsing M(kvn) < k?*5p!®
processors. Whenever such a recursive factorization is available, O(log n)? time

and nk? processors suffice to solve Az=b for a given b.

Corollary 4.3. If A is an nXn symmetric positive definite matriz with a
d-dimensional grid graph (for any d > 2) and if cond a < n® (), then we can
numerically compule a recursive (0'-(/9).factorization of A in time O(log n)}
using M(n'- (/) < n2%125/d) processors. Whenever such a recursive factoriza-

tion is available, O(log n)? time und 0> /9 processors suffice to solve Ax=b for a

given b. .
.'~:.‘1
N
S
3
. -
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and X, is a block-diagonal matrix consisting of square blocks of sizes at most
s(ad"n) X s(a?Pn) where ng > a’n, n4 ‘is a constant. (Here and hereafter WT
denotes the transpose of a matrix W.) Such a recursive s(n)-factorization has
length at most d < O(log n) (whereas a customary LDLT factorization has length
n). This recursive factorization is said to be numerically computed if the com-
puted approximants of the induced matrices A, ..., A4 satisfy (4.1) within error

norm 2™, for a positive constant c.

Observe that, by definition of a recursive s(n)-factorization, we have for

h=0,...,d-1 the identity

I 0 rx,, 0 1 Xh'lYl;r
Aol ] o A o (42
and hence
l I -x,,—'y,,Tw fx,,—l 0 I 0

Thus given a recursive s(n)-factorization (4.1), it is easy to recursively com-

pute A™b for any column vector b of length n.

Lemma 4.1, For all constants a, a*,c such that 1/2 < a* < a <1, if
s(n) < cn? and if C is a class of s(n)-separable graphs with respect to a, then C
is 3°(n}-separable with respect to a*, where s*(n) < cn?/(1-a“).

Lemma 4.1 can be proven following [Lipton and Tarjan, 79], see the end of

this section. Without loss of generality, in the following we will assume that

a = 1/2 (see Lemma 4.1), that M(n) = n“ and that s(n) = O(n’) for fixed con-
stants w and o such that 0 < o0 < 1,and 2 < w < 3. Furthermore we will
assume that ¢ > 1/w such that a < 1/2“? (see Lemma 4.1), so a“? < 1/2.

Theorem 4.1. If C is a class of s(n)-separable graphs and sf the s(n)- o

separators of a graph G € C and of its subgraphs are known, then given an nXn

AT L IR PR T T

L TP S R P M PR R P LT T Y S TP T T

DA R N T I A A T I T T TR S s S A R CER RSN o WAt e LR - - .
" TP T T T T S e o S L S P I S AT
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Lemma 3.6. Let B and t be defined by (2.6). Let p be an eigenvalue of
R(B) =I1-BA. Then0 < p < 1-1/((cond A)*n).

Proof. Let R(B)v = uv for v 3£ 0. Then (I-tAHA)v = v - tAHAv = pv.
Therefore ABAv = Av for A = (1-p)/t so \ is an eigenvalue of AHA. Corollary
3.2 implies that 1/}JA7Y)|2 < X = (1 - p)/t < JJA||%. It immediately follows that

1-t[JAl? < p < 1-t/]AY2 (3.1)
It remains to recall (2.6) and to apply the inequalities of Lemma 3.3. Q.E.D.

Since p is an arbitrary eigenvalue of R(B), p(R(B)) < 1 - 1/((cond A)%n).
On the other hand, ||R(B)]| = p(R(B)) since R(B) = I-tAHA is Hermitian. This
completes the proof of Lemma 2.4. Q.E.D.

4. Parallel Generalized Nested Dissection

In this section, we fix a class C of undirected graphs, which are s(n)-
separable (with respect to constants ny and o), see Definition 1.1. Let A be an
nXn symmetric positive definite matrix with graph G=G(A) in class C (see
Definitions 3.1 and 1.2). Even if A is sparse, and if G(A) has small separators,
A7! may not be sparse (and in fact if G(A) is connected, A! may have no zero
entries). We will describe an efficient parallel algorithm that computes a special
recursive factorization of A. With that factorization available, it will become
very easy to solve the system of linear equations of the form Ax=>b for any given

vector b.

Definition 4.1. A recursive s(n)-factorization of @ matriz A with respect to
a,0<a<l, is a sequehce of matrices Ay, A, ..., A4 such that Ay = PAPT, P is

an nXn permutation matrix and for h=0,1,...,d-1,

Xp Yy -
Ay = [Yh Z, ] v Ty = Ay + XYY, (4.1)

“fe® R PR AR e
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symmelric definite. (WHw is Hermitian since

(WHW)H = WHWH)H — wHW  compare Definition 2.2.)

positive

We will use the 3 following well known results, see [Atkinson, 78], pp. 416-
431, or [Wilkinson, 65]. (Recall that ||W|| denotes the 2-norm of a matrix W.)

Lemmas 3.1. [|W|| = |[|[WH|| for all W; ||[W]]| = (W) if W = WH,

Lemma 3.2. All eigenvalues of a Hermitian positive semidefinite matriz are
nonnegatsve.

Lemma 3.3. Let W =(w;). Then IWHW|| = p(WHW) = [|W]|2 <
IWHW]|, < max Z,: | wi | max 2'3 [wi | < ofjWHW][.

Applying Lemma 3.3 to W = AH we obtain that ||AH||2 < 1/t where t is
defined by (2.8). Therefore, by Lemma 3.1, ||AH|] < 1/(t)JA]]). Taking into

account that ||A]| > max | a;;| we derive the first 2 inequalities of Lemma 2.4.
!

1,

Corollary 3.1. be defined Then

Bl < 1/ ]]All < l/f!}?x |21

Let A =(a;), B by (2.6).

It remains to prove the last inequality of Lemma 2.4.

Lemma 3.4. Let \ be an eigenvalue of a nonsingular matriz W. Then 1/\

is an eigenvalue of WL,

Proof. Surely A 7 0 for nonsingular W. Let Wv = \v for a vector v 3 0.
Then Wv 7 0 and W-{(Wv) = v = (1/A\)\v = (1/\)Wv. Q.E.D.

Corollary 3.2. Let \ be an eigenvalue of AHA and A be nonsingular. Then
IIATE < ) < A

Proof. )\ < p(AHA) = ||A||* by Definition 3.1 and Lemma 3.3. On the
other hand, (AHA)!' = A-YA )M, so (AHA)! is a Hermitian positive definite
matrix. By the virtue of Lemma 3.4, 1/) is an eigenvalue of (AFA)™). Conse-

quently 1/X < p((A"A)) = p(A"{AT)) = ||AY|%. QED.

................................................
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respectively, compare (2.1). Let (cond W), = ||W||.IIW|l, / W s nonsingular,

s = 00 or s=1.
Remark 3.1. Using Definition 2.3 we may rewrite (2.6) as

B = tA", t = 1/(llAlls, lIAlly).

Substituting this into (3.1) and using Lemma 3.3 of the next section, we deduce

that

. IRB)}| < 1-1/(|AlllIAILIATP) < (2.9)
k 1-1/((cond A),, (cond A),).

Furthermore we may choose

B = tAft = 1/||A%Al], > 1/(IAM|LIIAIL) = 1/(] AllliAlly)
L and deduce from (3.1) and Lemma 3.3 that, for this choice of B,

- IR(B)]] < 1-1/(JIARA]L,)IA 1), (2.10)
- which is a further small improvement over (2.8) and (2.9). (2.9) and (2.10) lead

to the respective improvements of Corollary 2.2.

Remark 2.2. Lemma 2.4 can be proven for any (nonsingular) matrix A.
For certain classes of matrices A there exist other options for choosing an approx-
imate inverse B. In Appendix B we indicate such options for some important
classes of matrices including Hermitian (real symmetric) positive definite, diago-

nally dominant and triangular matrices.

3. Proof of Lemma 2.4.

Definition 8.1, p(W), the spectral radius of a matriz W, is the maximum

magnitude of the eigenvalues of W. o ;

Definition 8.2. A matrix that can be represented as WHW for some matrix
W is called a Hermitian positive semidefinite malriz (or a Hermitian nonnegative
definite matriz). A nponsingular Hermitian positive semidefinite matrix is called ) j

Hermitian positive definite. A real Hermitian positive definite matrix is called

......................................................................................
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IIBll < 1/lIA]l < 1/!!3?* L a1, IR(B)I| < 1-1/((cond A)*n). (2.8)
We also immediately verify the following estimate.

Lemma 2.5. Computing B by (2.6) costs only 3n*-2n+1 arithmetic opera-

. s
Tt W
e et e

A

tions and 20-2 comparisons that can be performed in Oflog n) time using n® pro-

cessors.

Combining Theorem 2.1, Lemmas 2.4 and 2.5, and the inequality of (2.7) we

, ‘,

get

Corollary 2.1. Let A = (a;), ¢ be arbitrary conatant, cond A < n0),

Then O(logn) time, M(n) processors suffice to compute a matriz A7 such that

IAT - A7) < 2/ Al < [IAY)j2™"/ cond A < J|ACY|j2 —
Although Corollary 2.1 covers all instances A of practical interest, we will L
also state the following immediate generalization of that corollary, compare (2.8) :
and Theorem 2.1. - ____1
Corollary 2.2. For any number k and for any nonsingular n Xn matriz A, - 1

it s sufficient to use O(k log n) parallel steps and M(n) processors in order to 1
compute @ matriz A™! such that — g
- 4

AT - 1A < (1-1/(n(eond A / [|AY] < 1
lJA"Y)(1-1/(n(cond A)}))*'/cond A < [|A~|(1-1/(n(cond A)?))>" e

In particular if cond A < C, then the precision |JA)| - [A'-AY| < e < 1 B

can be assured using O(log n (1+ | log(nC? log(1/€) | )) parallel steps and M(n) ) 4
processors, if C and € are arbitrary positive constants, ¢ < 1. ~

In the next remark and in Appendix B we will use the following definition,

compare [Atkinson, 78], [Golub and van Loan, 83|, [Wilkinson, 65].

Definition 2.3. ||W|l, =max 3] [w;|, |[W|l; = max }] | w;]| are the
] ,l ) i

operator norms of & matriz W = | w;; | associated with the mazimum norm

IVlloo = max; | v;| and with the 1-norm ||v|], = Y ; | v;| of a veetor v = (v)),

..................
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binary numbers of the form a2* where a and k are integers,
la] <2, 0<k <m,m=n°0,
Lemma 2.3 immediately implies the following

Theorem 2.1. Let (2.2) and (2.4) hold and let ¢ be a constant. Then
O(log2n) time and simultaneously M(n) processors suffice in order to compu.te a
matriz A™! satisfying (2.5).

Here (and frequently hereafter) we exploit the possibility to reduce the
number of processors by a constant factor k by the price of slowing down the

computation k times.

It remains to choose B satisfying (2.4) for a nonsingular A. Hereafter in all
expressions ¥; ¥, max; max;,max;; the integer parameters i and j range from 1 to
n. Let us specify the vector norm to be the FEuclidean norm,
VIl = (%; 1v;]2)"2 and let us extend that vector norm to the matrix norm by

(2.1). The resulting matrix norm is called the 2-norm. Let us choose
B = tA" t = 1/(max ¥} |a; ] max Y3 |ay;]). (2.6)
1 j J i

Definition 2.2. Here and hereafter WH designates the Hermitian transpose
of a matriz W = (w;). WH = (w;i)s wji‘ being the complex conjugate of w;;. If
WH = W, W is called a Hermitian matriz. If W is real, then WH is the transpose
of W (which we will designate WT) and Hermitian W means symmetric W, such
that w;; = wj; for all ij.

cond W = ||W[| * ||W-}|| > ||T|| = 1 if W is nonsingular, (2.7)
cond W = oo otherwise.

We will prove the next lemma in the next section, compare also Remark 2.1
below and Remark B.1 in Appendix B.

Lemma 2.4. Let A = (a;) be nonsingular, let B be defined by (2.6) and
R(B) be defined by (2.2). Then
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R(B)=1-BA, |[RB)l| =q< 1. (2.2)
{Actually (2.2) implies that A and B sre-nonsingular, see [Atkinson, 78], p. 465.)
Note that J|(R(B))i]] € q' — 0 as i — oo if (2.2) holds.

Lemma 2.1. Let [[(R(B){| -0 as i—oo. Then A= ¥ (R(B))B.

QED.

Proof. A"' = (A"'B-))B = (BA)"'B = (I-R(B))'B = 3" (R(B))B. QE.D.

i==0

Lemma 2 | immediately implies

Lemma 2.2. Let B = (k[-Il(I+(R(B))2‘))B. Then A“-Bk‘ = i (R(B))iB.
h=0 2t

The relations (2.2) and Lemma 2.2 imply that

1A =Bl < 3 qiiBll = o 1B} / (1-q). (2.3)

-

The first algorithm for INVERT successively computes (R(B))zh and By for
h=0,1.... k-1. Recall that, by the virtue of (2.2), ||(R(B))il| < ¢, so the computa-
tion by that algorithm is stable. In Appendix C we will also consider two other
algorithms that converge to A~! with the same speed. Those algorithms are supe-

rior over the first algorithr for they are not only stable but also self-correcting.
(2.3) implies
Lemma 2.3. Let (2.2) hold and
q=1-1/0"Was n - 0. (2.4)
Let ¢ be a constant. Then O(log n) iterations of the algorithm of this section
suffice in order to compute a matriz A" such that
At - AT < 2|, (2.5)
The latter precision suffices for all practical purposes and cannot be reduced

further if | (log ||B}|)| < n° (V) and if the entries of A-! are to be represented by

LU cont Jasui. <ol Jaste sutels o od




dimensional grid, so is n?/3-separable, then we have the same time bounds as for

planar and finite element graphs, and our processor bounds are n? and n'!3,

respectively. Furthermore, if we use more theoretical bounds for matrix multipli-

cation, say M(n) = 025, then our processor bounds, for computing the special

recursive factorization are further decreased to n!'% in planar case, to n!'%k?5 in

the case of n-vertex finite element graphs with < k vertices per face and to n'%

for the 3-dimensional grid.

1.4. Contents

In Section 2 we present our iterative parallel algorithm for INVERT and its
complexity estimates. In Section 3 we prove the main lemma of Section 2. In
Section 4 we present our parallel algorithm for LINEAR-SOLVE in the case of
sparse symmetric positive definite systems and bound its complexity. In Appen-
dix A we bound the asymptotic parallel complexity of matrix multiplication. In
Appendix B we consider the simplified methods for defining an approximate
inverses of some special matrices. In Appendix C we consider two alternatives to
the iterative algorithm of Section 2. In Appendix D we analyze the errors of our

algorithms.

2. Iterative Methods for Parallel Matrix Inversion
Definition 2.1. Let a vector norm be fixed. Then we extend it to the asso-
ciated operator norm of matrices so that
[IWl] = max {|Wv]| / [Iv]} (2.1)
vgk0
for all nonzero vectors v and for all matrices W.

In the following n° (!) denotes the values bounded by a polynomial in n ss
D — 00, A = (a;) is a fixed nXn nonsingular complex matrix (so A™! exists), 1
denotes the nXn identity matrix, R(X) denotes I - XA, and B is called an

approzimate inverse of A if
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Ny
of ¥ M(nyy) processors.
kem1

To estimate this number of processors, we need

Ny,

Lemma 4.6. For anyy > 1, ¥, ngy = O(s(n)?).

k=]

Proof. Observe that, by the definition of the tree Tg, if the nodes
(Vbo1,kpSh-1x,) 804 (Vi_gx,Shyx,) are the children of the node (Vyy,Syy), then
Dhky + Dbtk < Dpx + | Shxl S opy +s(aPn) since  [Syy| < s(a?bn).

Ny

This recursive inequality implies that ) nyly is maximized when ouly one term
k=]
. Ny d . ®
is nonzero; in this case }5 oy < ) s{a?n)7 = O(s(n)") because we have
kaml h*°=h+1

assumed that s(n} = O(n?). Q.E.D.

Since we have also assumed that M(n) = n“, Lemma 4.6 implies that

N
zs M(ny ) = O(M(s(n})). By slowing the parailel computation down by a con-
ka=l

stant factor, we can reduce the processor bounds to M(s(n)) thus arriving at
Lemma 4.7. Ay, = Z, - Y, X; 'Y}, can be computed in time O(log s(n))?

using M(s(n)) processors.

Since there are only d=O(log n) stages, each taking O(log s(n))® time and
using M(s(n)) processors, we conclude that O(log n(log s(n))?) is the total time
required in order to numerically compute the recursive s(n)-factorization of A

using M(s(n)) processors.

Thereafter, we can solve Ax=b for any given column-vector b of length n by
compﬁting x=A"1b by recursive application of equation (4.2) for h=0,1,...,d-1.
The stage h of this “‘backsolving” computation requires parallel multiplication of

a matrix of size ny, X npy times a column-vector for each k=1,2,...,N;. Thus

Ny
stage h can be done in time O(log s(n)) using ¥, nf'k processors. By Lemma 4.6,
ko]

...................
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this bounds the number of processors to O(s(n)?), and a slowdown by a constant
factor reduces this processor bound to s(n)2. The total time for all d=GC(log n) )
stages of such backsolving computation is O(log n log s (r)). This completes the .
proof of Theorem 4.1, except it remains to justify our assumption that a“? < 1/2
by proving Lemma 4.1. )
Proof of Lemma 4.1. Let us first assume that a® > 1/2. Given any
graph G € C, where G = (V,E) and n= | V| > ny we can partition V into
disjoint sets V", V5, S* such that | V| < a°n, | V5| < a’n, |5*| < O(s(n))
and V,’ and V5 are not connected by E. That partition can simply be found by *
appropriately combining the N, < (a®-1/2)1/log,a = O(1) vertex subsets
found at depth h = d-log((a® - 1/2)/log a) of Tq. The separator Sy is defined to -
be the union of all separators of depths > h in T, and since there is only a con- *
stant number of such separators, | Sy | < O(s(n)). Then V{ can be any maximal
collection of the vertex subsets of depth h in Tg where n/2 < |V | < a'n.
Letting Vo =V -V, -~ S}’ we have |V | <n-(n/2) < /2 < a’n so Cis
s*(n)-separable with respect to a* where s°(n) = O(s( 1)) provided that a* > 1/2.
This already justifies the assumption that a*? < 1/2 if ¢ > 1/w, which is actu- .
ally sufficient for our purpose. The extension to the case a®* = 1/2 and the
decrease of the constant hidden in O(s(n)) to 1/(1-a)) are obtained similarly to
the proof of Corollary 3 of [Lipton and Tarjan, 79]. Q.E.D. o
o
,.
!"
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Figure 1. The 7X7 grid graph G,, with elimination numbering
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Figure 2. The graph G, derh{ad fr?m Gy by}' simultaneous elimination of
= {1,2,...,16
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{17,18,...,24}.

—
—_—

Figure 3. The graph G, derived from G, by simultaneous
elimination of R,
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Figure 4. The graph G; derived from G, by simultaneous
elimination of R, = {25,26,...,36}.
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Figure 5. The graph G, derived from G, by simultaneous
elimination of Ry = {37,38,...,42}.
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Figure 6. Tree T in the case d=2.
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Appendix A. Asymptotic Parallel Complexity of Matrix Multiplication
Theorem A.1l. Suppose that the product of two NXN matrices can be com-
puted in O(NY) arithmetic operations for w > 2. Then such a product can be
compuled in parallel time O(log N) tnvolving at most N* processors.
Proof. We recall the well known class of bilinear algorithms of rank M for
the evaluation of an n X n matrix prdduct XY = (&; x;; y;c)- Such algorithms first

compute the 2M linear functions

L,= % f(i.j,q)x;, Ly = ,Zk: r(i.k,9¥;0 a=1,...M, (A.1)
then the M products L L, and finally I; x;; y;x as the linear functions in those
products,

? X Yik = :g__:: 1**(k,i,q) L L, (A.2)

Here 1(i,),q), 1°(j,k,q) and f*°(k,i,q) are constants. Such a bilinear algorithm can
be applied recursively, substituting nXn matrices for the variables x;; and y;, in
(A.1), (A-2) and applying the same algorithm in order to multiply L, and L,
which become nXn matrices in that case. (Such recursive bilinear algorithms
compute n? X n? matrix product involving O(MP) arithmetic operations.) It is well
known, see [Strassen, 73|, [Coppersmith and Winograd, 82], that for large n there
exist the above recursive bilinear algorithms of rank M < n“ that evaluate an

nXn matrix product, provided that the assumption of Theorem A.1 holds.

Let us estimate the parallel complexity of such recursive bilinear algorithms
for n®xn® matrix multiplication, that is, the time T(h) and the number of pro-

cessors P(h) involved in such algorithms.

(A.1),(A.2) immediately imply that simultaneously

T(h) < T(h-1) + 2logn + log M + 5,
P(h) < max{2n?", Ma2*-2, P(h-1)M}.
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Choosing h — 0o we immediately deduce the desired estimates of Theorem A.1 in
the case where N is a power of n. The extension to arbitrary NXN matrices is
also immediate via embedding those matrices into n®Xn® matrices banded with

zeros for h = [log N/log n].

Appendix B. Approximate Inverses in Some Special Cases.

In this section we will improve the choice (2.8) of an approximate inverse of

A for certain classes of matrices A.
Modification B.1, compare [Isaacson and Keller, 66], p. 84. Let A\ ),,..., 7,
be the eigenvalues of AHA such that
A SN 22 >0
(As follows from Lemmas 3.3 and 3.4,
M= AR, A = 1/lIATY2) (B.1)
If for a given matrix A we may precompute \; and \,, then we may improve
the choice (2.6) for the approximate inverse B of A by setting
B = t*AH ¢ = 2/(\; + \,)- (B.2)
(B.1) and (B.2) imply that ||R(B)|| = (A - M)/(A; + Xy), and this leads to the
following equations, which improve over the bounds of Lemma 2.4,

q= ||R(B)|| = _@2’9_&2'_1 =1- _i__ (B.3)
(cond A)*+1 (cond A)%+1

(Indeed, ||R(B)|| = p(R(B)), see Lemma 3.1, and the eigenvalues of R(B) are just

B; = 1-t°X;, i=1,...,n, see the proof of Lemma 3.5, so that 1-t*\; < g; < 1-t*),,
i=1,...,n. It remains to recall (B.1),(B.2) in order to arrive at (B.3).) SR
The improvement over the estimate of Lemma 2.4 is limited, however, that

is, 1-||R(B)|| increases less than 2n times even if we may precompute X\, and X,

satisfying (B.1) and then replace (2.6) by (B.2).

Modification B.2. If the matrix A is Hermitian positive definite, (see
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Definition 3.1), which is frequent in practical computations, see [Golub and van

Loan, 83|, [Hageman and Young, 81], [Young, 71], then we may choose
B=t Lt =1/max}} |a;] <1/||Al} < 1/max]|a;].

i g iJ
Extending the proof of Lemma 2.4, we derive in this case that : \ ' ]

IRB)I < 1-t' /]IA7Y]] < 1-1/(n!/2 cond A). (B.4) '
Remark B.1. Actually we may reduce the inversion of an arbitrary non-
singular matrix A to the inversion of the Hermitian positive definite matrix AHA

since A™' = (ABA)'AH. Then we will arrive at the bound (B.4) (where AHA .

replaces A) if we compute the 1-norm ||AHA]|, of the matrix AHA and choose

B = I/||APA||,, see Definition 2.3. The resulting estimate (B.4) will be close to

(2.8) and (2.10). '
Modifications B.1 and B.2 can be combined together if A is a Hermitian posi-

tive definite matrix and if ||A|| and 1/||A™!|| can be precomputed, in which case
2 ]

setting B = 21/(||A|] + 1/]|A7}||) we would yield ||R(B)|| = 1- wond AL

Modification B.3. Case 1. Let A = (a;;) be strongly diagonally dominant,

that is, let for a constant ¢ ;
(2-1/09) || > ¥ || foralli (B.5) .
or ,
(2-1/0%) | 355 > Z.: {81 for all j. (B.6)

The class of diagonally dominant matrices is very important in applications, see
[Varga, 62] and [Hageman and Young, 81]. (B.5) implies that A is strongly row-
diagondlly dominant; (B.6) implies that A is strongly column-diagonally domsnant.

In both cases we choose

B = diag{1/3);,1/a99, - - - ,1/8,,}. (B-7) 4 ]
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Lemma B.1, compare Definition 2.3. (B.5) and (B.7) imply that

IIR(B)llo < 1-1/n" (B.8)
(B.6) and (B.7) imply that
IR(B)I}, < 1 -1/n" (B.9)
Proof. For all i the row-vector i of the matrix R(B)=I-BA has the 1-norm
equal to 37 [a;|/|a;| which is not greater than 1-1/n° if (B.5) holds. This
i
immediately implies (B.8). (B.8) and (B.9) turn into (B.5) and (B.8) if A replaces
Al
Thus in the cases where A is strongly diagonally dominant we choose B
defined by (B.7) and again arrive at the bounds of Corollary 2.1 provided that
one of the two norm of Definition 2.3 substitutes for the 2-norm. The computa-
tion of B by (B.7) involves only n arithmetic operations that can be performed

using 1 parallel step and n processors.

Modification B.3. Case 2. Let A = (a;;) be a triangular matrix. Then
define B by (B.7) and apply the algorithm of Section 2 for computing B, for
k = [log n]. Although B does not satisfy (2.2) in this case, the method works

simply because R(B) is an nXn triangular matrix whose diagonal is filled with

. -1 .
zeros and therefore R(B)i = 0 if i>n. Thus A™' = By = 3 (R(B))B, so that

im0
the convergence of the algorithm to A™! in [log n] steps immediately follows for
any triangular nonsingular matrix A even if cond A is exponentially large, com-
pare [Csanky, 76] and [Heller, 73]. (Note that the inversion of a matrix A can be
reduced to the inversion of triangular marices if the QR-factors of A or LUP-

factors of A are available.)

Appendix C. Refinement of the Approximate Inverse of a Matrix by
Newton's Iteration and by the Residual Correction Method.




S LNy e TN R R R ———mm—

-37-

Next we will consider two alternatives to the first iterative algorithm for
INVERT described in Section 2. As in the case of the first algorithm, we will
assume that an approximate inverse B of A has been precomputed such that (2.2)

holds.

The second algorithm performs Newton's iteration for the matrix equation

R(X) = 0 by successively computing

B, = (2 - By ;A)By | = (I + R(By4))By, (C1)
k for h=1,2,... and letting By = B. It is readily verified that R(By) = (R(B,_,))? for
s h=12,..., so that I - B A = R(B,) = (R(Bo))z' for all k. We postmultiply the

latter equations by A}, note that (2.2) and Lemma 2.1 imply that

1A < IBll/(-9), (C2)

and arrive at the bound
lIA™ - Bll < ¢IBII/(1~) (C3)
compare (2.3).
The third algorithm relies on the well known residual correction method, see
[Atkicson, 78], p. 469. We successively compute
Xpe1,g = Xp g + Bg(l - AX}, (), Xo, = By for h=0,1,...5-15>2  (C.4)
where g=0 and B, = B satisfies (2.2). Then we recursively perform the iteration
sweep (C.4) for g=1,2,..., choosing B, = X, ,. Within each iteration sweep (C.4)
I-Xpy1 A = (1 - X A)I - BA), b=0,1,...s-1, see [Atkinson, 78], so that
Il - BgyyAll < |IT - BAJ[". Therefore after k iteration sweeps (C.4) we arrive at

an approximation B, to A-! such that ||I - BA|} < q’.. We postmultiply I - BA
by A}, recall (C.2) and deduce that

3 A - Byl < ¢IBII/(1-q). (C.5)
‘ For s=2, (C.5) is similar to (2.3) and (C.3).

Unlike the algorithms of Section 2, both algorithms of this appendix are
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self-correcting; the errors of computing Bk and X, for any k,h,g do not pro-
h pagate, that is, they are automatically corrected at the next iterations provided,

of course, that the iterations are not too much contaminated by the errors (it is

necessary that in spite of the errors the computed matrices B, and X;,; remain to

be approximate inverses of A), see the next appendix.

Appendix D. Some Error Estimates.

Let us assume that the computation of B by (2.8) and the subsequent
Newton’s iteration (C.1) have been performed with finite precision chopping to d

binary digits and let us estimate the total round-off errors of the computation.

Let A(u) and 6 (u) = designate the absolute and the relative errors of

JA(u)]]
i
computing u where u can be a matrix or a scalar (in the latter case
llull = |u],||Au]l = | Au}). As this is customary, we will assume that

d — oo and will ignore the values of smaller orders of magnitudes.
We immediately derive from (2.6) that § (1/t) < 2l §(B) < 3- 24,
Since ||B|| < 1/||A]], see (2.8), it follows that

III-(B + AB)A|| < |II-BA|| + 3 - 2°¢ < 143 - 24-1/(n(cond A)?).

Therefore it is sufficient to choose d = O(log n) in order to assure that, say

[I-(B+ AB)A|| < 1-0.8/an¢ (D.1)
provided that ||I-BA|] < 1-1/n°. Therefore if we compute B by (2.8), it is
sufficient to choose d = O(log n) in order to assure that the computed approxi-
mation matrix B + AB will remain practically as good as the approximate
inverse B, that is, the total number of iterations sufficient for computing A-! with
required precision may increase at most by 1 if B + AB substitutes for B. (Note
that the first iteration squares the residual norm and turn 1-0.8/n° into

1-1.2/n°+0.36/n2¢, which is less than 1-1/n° for large n, compare (D.1).)

...........................................................................................................
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Next let us assume that B, , and A sre given and that B, has been com-
puted by (C.1) using d binary digits. If the straightforward algorithm for matrix
multiplication is used, then the error bounds IIA(Bh_,A)H and ||A(B,)|| can be
immediately estimated applying the backward error anslysis, see [Wilkinson, 85].
The error analysis is not too hard even if the matrix multiplications in (C.1) are
performed by asymptotically fast algorithms. In [Pan, 84}, pp. 117-127, the error
analysis is presented for such fast sequential algorithms; the analysis does not
change in the case of parallel computation. In particular, Corollary 23.4, p. 121,
and Theorem 24.2, p. 127, of [Pan, 84] imply that

HA(B, AN < 2-n%W)|By ] * ||A}. (D.2)
Let ||I-ByA|| = q, so that III—B‘AII < q*for all g. Then (C.1) implies that

[Byll < (1+{{1-ByyAlDByll < (1+¢™)[Byyll < (14q+q%+ - - - +0")][Byll,
compare Lemma 2.2. Therefore
lIBull * Il < (1/(1-Q)IIBoll + 1IANl < 1/(1-q),
since B = B, is defined by (2.6), compare (2.8). Substitute this into (D.2) and
deduce that
1A(B, ANl < 2740°W/(1-q) £ 24O

if 1-q > 1/n°0),

Similarly we extend this bound to the following estimate.

NaByI < 2740 WII+RB, )| * 1Byl < 27%0%0/)jA)
so that
(B, + ABW)AIl < [[I-B4Al| + 2%V,
If, say |I-ByA)} < 27°1, then it is sufficient to choose d=n¢+Oflog n) in order
to assure that |[I-(B, + A(By))All < 2. Then again B, + A(B,) serves practi-

cally as well as bh in the subsequent iterations (C.1), (that is, 1-2 extra iterations

shall guarantee at least the original precision of the output if B, + A(B,) replaces
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B, in (C.1)).

Similar error estimates can be obtained if the third algorithm (using the resi-

dual corrections (C.4)) is applied.
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